Protein Adsorption to Titanium and Zirconia Using a Quartz Crystal Microbalance Method

نویسندگان

  • You Kusakawa
  • Eiji Yoshida
  • Tohru Hayakawa
چکیده

Protein adsorption onto titanium (Ti) or zirconia (ZrO2) was evaluated using a 27 MHz quartz crystal microbalance (QCM). As proteins, fibronectin (Fn), a cell adhesive protein, and albumin (Alb), a cell adhesion-inhibiting protein, were evaluated. The Ti and ZrO2 sensors for QCM were characterized by atomic force microscopy and electron probe microanalysis observation, measurement of contact angle against water, and surface roughness. The amounts of Fn and Alb adsorbed onto the Ti and ZrO2 sensors and apparent reaction rate were obtained using QCM measurements. Ti sensor showed greater adsorption of Fn and Alb than the ZrO2 sensor. In addition, amount of Fn adsorbed onto the Ti or ZrO2 sensors was higher than that of Alb. The surface roughness and hydrophilicity of Ti or ZrO2 may influence the adsorption of Fn or Alb. With regard to the adsorption rate, Alb adsorbed more rapidly than Fn onto Ti. Comparing Ti and ZrO2, Alb adsorption rate to Ti was faster than that to ZrO2. Fn adsorption will be effective for cell activities, but Alb adsorption will not. QCM method could simulate in vivo Fn and Alb adsorption to Ti or ZrO2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Processing and Characterization of Nanoparticle Coatings for Quartz Crystal Microbalance Measurements

The quartz-crystal microbalance is a sensitive and versatile tool for measuring adsorption of a variety of compounds (e.g. small molecules, polymers, biomolecules, nanoparticles and cells) to surfaces. While the technique has traditionally been used for measuring adsorption to flat surfaces and thin ridged films, it can also be extended to study adsorption to nanoparticle surfaces when the nano...

متن کامل

Surface Modification Enhanced Reflection Intensity of Quartz Crystal Microbalance Sensors upon Molecular Adsorption.

Molecular adsorption on a sensing surface involves molecule-substrate and molecule-molecule interactions. Combining optical systems and a quartz crystal microbalance (QCM) on the same sensing surface allows the quantification of such interactions and reveals the physicochemical properties of the adsorbed molecules. However, low sensitivity of the current reflection-based techniques compared to ...

متن کامل

Adsorption of a PEO-PPO-PEO triblock copolymer on metal oxide surfaces with a view to reducing protein adsorption and further biofouling.

Abstract Biomolecule adsorption is the first stage of biofouling. The aim of this work was to reduce the adsorption of proteins on stainless steel (SS) and titanium surfaces by modifying them with a poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO triblock copolymer. Anchoring of the central PPO block of the copolymer is known to be favoured by hydrophobic interaction with the substra...

متن کامل

Polymeric smart coating strategy for titanium implants

Hyaluronan based hydrogel coatings can mimic extracellular matrix components and incorporate growth factors that can be released during a progressive degradation while new tissue regenerates. This paper describes a structural characterization of a hydrogel coating made of modified hyaluronan polymers and how these coatings interact with bone morphogenetic protein-2 (BMP-2). Quartz crystal micro...

متن کامل

Directed assembly of PEGylated-peptide coatings for infection-resistant titanium metal.

Appropriate surface chemistry between a material and its surrounding biological environment is crucial to the eventual integration and performance of any implant, whether metal, plastic, or ceramic. A robust peptide-based coating technology capable of easily modifying the surface of titanium (Ti) metal through noncovalent binding is described. A short peptide possessing affinity for Ti was iden...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017